On the Bloch Decomposition Based Spectral Method for Wave Propagation in Periodic Media
نویسندگان
چکیده
We extend the Bloch-decomposition based time-splitting spectral method introduced in an earlier paper [13] to the case of (non-)linear Klein-Gordon equations. This provides us with an unconditionally stable numerical method which achieves spectral convergence in space, even in the case where the periodic coefficients are highly oscillatory and/or discontinuous. A comparison to a traditional pseudo-spectral method and to a finite difference/volume scheme shows the superiority of our method. We further estimate the stability of our scheme in the presence of random perturbations and give numerical evidence for the well-known phenomenon of Anderson’s localization. version: February 15, 2008
منابع مشابه
Frozen Gaussian Approximation for High Frequency Wave Propagation in Periodic Media
Propagation of high-frequency wave in periodic media is a challenging problem due to the existence of multiscale characterized by short wavelength, small lattice constant and large physical domain size. Conventional computational methods lead to extremely expensive costs, especially in high dimensions. In this paper, based on Bloch decomposition and asymptotic analysis in the phase space, we de...
متن کاملSemiclassical Models for the Schrödinger Equation with Periodic Potentials and Band Crossings∗
The Bloch decomposition plays a fundamental role in the study of quantum mechanics and wave propagation in periodic media. Most of the homogenization theory developed for the study of high frequency or semiclassical limit for these problems assumes no crossing of the Bloch bands, resulting in classical Liouville equations in the limit along each Bloch band. In this article, we derive semiclassi...
متن کاملOn Bloch Waves for the Stokes Equations
In this work, we study the Bloch wave decomposition for the Stokes equations in a periodic media in Rd. We prove that, because of the incompressibility constraint, the Bloch eigenvalues, as functions of the Bloch frequency ξ, are not continuous at the origin. Nevertheless, when ξ goes to zero in a fixed direction, we exhibit a new limit spectral problem for which the eigenvalues are directional...
متن کاملBloch decomposition-based Gaussian beam method for the Schrödinger equation with periodic potentials
The linear Schrödinger equation with periodic potentials is an important model in solid state physics. The most efficient direct simulation using a Bloch decomposition based time-splitting spectral method [18] requires the mesh size to be O(ε) where ε is the scaled semiclassical parameter. In this paper, we generalize the Gaussian beam method introduced in [23] to solve this problem asymptotica...
متن کاملMPI- and CUDA- implementations of modal finite difference method for P-SV wave propagation modeling
Among different discretization approaches, Finite Difference Method (FDM) is widely used for acoustic and elastic full-wave form modeling. An inevitable deficit of the technique, however, is its sever requirement to computational resources. A promising solution is parallelization, where the problem is broken into several segments, and the calculations are distributed over different processors. ...
متن کامل